GSM QUAD-BAND ANTENNA
Part No.: ADH-151XSXXX

Index.

<table>
<thead>
<tr>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drawing</td>
</tr>
<tr>
<td>2. Test report</td>
</tr>
<tr>
<td>• Electrical test</td>
</tr>
<tr>
<td>• Pattern test</td>
</tr>
<tr>
<td>3. Specification</td>
</tr>
<tr>
<td>• Connector</td>
</tr>
<tr>
<td>• Cable</td>
</tr>
<tr>
<td>4. Packing</td>
</tr>
<tr>
<td>• Blister</td>
</tr>
<tr>
<td>• Carton</td>
</tr>
</tbody>
</table>

Modification History:

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>2010/11/18</td>
<td></td>
</tr>
</tbody>
</table>

www.adh-tech.com.tw
Test Report

Pattern

ANTI

www.adh-tech.com.tw
Cable

Construction:
A) Center Conductor:
30/2/50 TFO-20AWG insulation
BO .012" x .001"
B) Shield:
30 AWG TFO
BO .001" Nom.
C) Jacket:
PEP - Brown Tint
BO .017" x .004"

Electrical:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Impedance</th>
<th>Capacitance</th>
<th>Velocity of Prop.</th>
<th>Cut-off Frequency</th>
<th>Loss Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 GHz</td>
<td>50 Ω Nom.</td>
<td>32 pF/ft Max.</td>
<td>78% Nom.</td>
<td>1.15 GHz</td>
<td>14.0 dB/100ft</td>
</tr>
<tr>
<td>0.40 GHz</td>
<td>28.2 Ω Nom.</td>
<td>45.0 dB/100ft</td>
<td></td>
<td>2.00 GHz</td>
<td>64.4 dB/100ft</td>
</tr>
<tr>
<td>1.00 GHz</td>
<td>23.0 Ω Nom.</td>
<td>45.0 dB/100ft</td>
<td></td>
<td>2.45 GHz</td>
<td>71.5 dB/100ft</td>
</tr>
<tr>
<td>2.00 GHz</td>
<td>19.7 Ω Nom.</td>
<td>55.0 dB/100ft</td>
<td></td>
<td>3.00 GHz</td>
<td>79.7 dB/100ft</td>
</tr>
<tr>
<td>5.00 GHz</td>
<td>15.7 Ω Nom.</td>
<td>104.3 dB/100ft</td>
<td></td>
<td>8.00 GHz</td>
<td>116.0 dB/100ft</td>
</tr>
</tbody>
</table>

Attenuation:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 GHz</td>
<td>14.0 dB/100ft</td>
</tr>
<tr>
<td>0.40 GHz</td>
<td>45.0 dB/100ft</td>
</tr>
<tr>
<td>1.00 GHz</td>
<td>64.4 dB/100ft</td>
</tr>
<tr>
<td>2.00 GHz</td>
<td>71.5 dB/100ft</td>
</tr>
<tr>
<td>3.00 GHz</td>
<td>79.7 dB/100ft</td>
</tr>
<tr>
<td>5.00 GHz</td>
<td>104.3 dB/100ft</td>
</tr>
<tr>
<td>8.00 GHz</td>
<td>116.0 dB/100ft</td>
</tr>
</tbody>
</table>

Physical Properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight per 1000 ft</td>
<td>6.3 lbs</td>
</tr>
<tr>
<td>Minimum Bend Radius</td>
<td>10"</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>-55°C to 200°C</td>
</tr>
<tr>
<td>Conductor Break Strength</td>
<td>4.8 lbs</td>
</tr>
<tr>
<td>Specification Data</td>
<td>Connector</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1) Impedance</td>
<td></td>
</tr>
<tr>
<td>2) Frequency Range</td>
<td></td>
</tr>
<tr>
<td>3) V.S.W.R.</td>
<td></td>
</tr>
<tr>
<td>4) Working Voltage</td>
<td></td>
</tr>
<tr>
<td>5) Dielectric Withstanding</td>
<td></td>
</tr>
<tr>
<td>6) Voltage Insulation Resistance</td>
<td></td>
</tr>
<tr>
<td>7) Contact Resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8) Recommended coupling nut torque</td>
<td></td>
</tr>
<tr>
<td>9) Coupling nut retention force</td>
<td></td>
</tr>
<tr>
<td>10) Contact retention force</td>
<td></td>
</tr>
<tr>
<td>11) Durability (mating)</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Data		

1) Operating Temperature		−65°C ~ +165°C
2) Thermal Shock		MIL-STD-202, Method 107, Condition F
3) Corrosion		MIL-STD-202, Method 101, Condition F
4) Shock		MIL-STD-202, Method 213, Condition I
5) Vibration		MIL-STD-202, Method 204, Condition I

<table>
<thead>
<tr>
<th>Material Specifications</th>
<th>Material Data</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Body</td>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td>2) Contact</td>
<td>Brass</td>
<td></td>
</tr>
<tr>
<td>3) Insulator</td>
<td>Teflon or Delrin</td>
<td></td>
</tr>
</tbody>
</table>